MATH SOLVE

2 months ago

Q:
# how would the expression x^3+64 be rewritten using sum off cubes

Accepted Solution

A:

[tex]\bf \textit{difference of cubes}
\\ \quad \\
a^3+b^3 = (a+b)(a^2-ab+b^2)\qquad
(a+b)(a^2-ab+b^2)= a^3+b^3 \\ \quad \\
a^3-b^3 = (a-b)(a^2+ab+b^2)\qquad
(a-b)(a^2+ab+b^2)= a^3-b^3\\\\
-------------------------------\\\\
\boxed{64=4^3}\qquad x^3+64\implies x^3+4^3\implies (x+4)(x^2-x4+4^2)
\\\\\\
(x+4)(x^2-4x+16)[/tex]